000 01049nam a2200169Ia 4500
005 20250616145528.0
008 230519t1930||||xx |||||||||||||| ||und||
082 _a515
100 _aCarslaw, Horatio
_96626
245 0 _aIntroduction to the theory of Fourier's series and integrals
250 _a3ª edición
260 _aNew York
_bDover Publications
_c1930
300 _a368 páginas
520 _aHistorical introduction Chapter 1: rational and irrational numbers Chapter 2:Infinite sequences and series Chapter 3: Functions of a single variable, limits and continuity Chapter 4: The definite integral Chapter 5: The theory of infinite series, whose terms are functions of a single variable Chapter 6: Definite integrals containing an arbitrary parameter Chapter 7: Fourier's series Chapter 8: The nature of the convergence of Fourier's series and some properties of Fourier's constants Chapter 9: The approximation curves and the gibbs phenomenon in Fourier's series Chapter 10: Fourier's integrals
650 _aAnálisis
942 _cBKG
999 _c172667
_d172667