000 01088nam a2200169Ia 4500
005 20250616145514.0
008 230519t1985||||xx |||||||||||||| ||und||
020 _a0716714809
082 _a512
100 _aJacobson, Nathan
_96358
245 0 _aBasic Algebra
250 _a2ª edición
260 _aNew York
_bFreeman and company
_c1985
520 _aVolume I Introduction: concepts from set theory. The integers 1.- Monoids and groups 2.- Rings 3.- Modules over a principal ideal domain 4.- Galois theory of equations 5.- Real polynomial equations and inequalities 6.- Metric vector spaces and the classical groups 7.- Algebras over a field 8.- Lattices and boolean algebras Volume 2 Introduction 1.- Categories 2.- Universal algebra 3.- Modules 4.- Basic structure theory of rings 5.- Classical representation theory of finite groups 6.- Elements of homological algebra with applications 7.- Commutative ideal theory: general theory and noetherian rings 8.- Field theory 9.- Valuation theory 10.- Dedekind domains 11.- Formally real fields
650 _aÁlgebra
942 _cBKG
999 _c172578
_d172578