000 | 01088nam a2200169Ia 4500 | ||
---|---|---|---|
005 | 20250616145514.0 | ||
008 | 230519t1985||||xx |||||||||||||| ||und|| | ||
020 | _a0716714809 | ||
082 | _a512 | ||
100 |
_aJacobson, Nathan _96358 |
||
245 | 0 | _aBasic Algebra | |
250 | _a2ª edición | ||
260 |
_aNew York _bFreeman and company _c1985 |
||
520 | _aVolume I Introduction: concepts from set theory. The integers 1.- Monoids and groups 2.- Rings 3.- Modules over a principal ideal domain 4.- Galois theory of equations 5.- Real polynomial equations and inequalities 6.- Metric vector spaces and the classical groups 7.- Algebras over a field 8.- Lattices and boolean algebras Volume 2 Introduction 1.- Categories 2.- Universal algebra 3.- Modules 4.- Basic structure theory of rings 5.- Classical representation theory of finite groups 6.- Elements of homological algebra with applications 7.- Commutative ideal theory: general theory and noetherian rings 8.- Field theory 9.- Valuation theory 10.- Dedekind domains 11.- Formally real fields | ||
650 | _aÁlgebra | ||
942 | _cBKG | ||
999 |
_c172578 _d172578 |